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Abstract
In their recent paper, Staver and Hansen (Global Ecology and Biogeography, 2015, 24, 985–987)

refute the case made by Hanan et al. (Global Ecology and Biogeography, 2014, 23, 259–263) that

the use of classification and regression trees (CARTs) to predict tree cover from remotely sensed

imagery (MODIS VCF) inherently introduces biases, thus making the resulting tree cover unsuit-

able for showing alternative stable states through tree cover frequency distribution analyses. Here

we provide a new and equally fundamental argument for why the published frequency distribu-

tions should not be used for such purposes. We show that the practice of pre-average binning of

tree cover values used to derive cover values to train the CART model will also introduce errors in

the frequency distributions of the final product. We demonstrate that the frequency minima found

at tree covers of 8–18%, 33–45% and 55–75% can be attributed to numerical biases introduced

when training samples are derived from landscapes containing asymmetric tree cover distributions

and/or a tree cover gradient. So it is highly likely that the CART, used to produce MODIS VCF,

delivers tree cover frequency distributions that do not reflect the real world situation.
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The MODIS VCF tree cover product of Hansen, DeFries, Townshend,

Marufu, and Sohlberg (2002) provides world-wide estimates of per-

centage tree cover derived from MODIS data. Discontinuities in tree

cover frequency distributions derived from these data have been used

to support the hypothesis that the observed distributions of forest,

savanna and grassland vegetation in the tropical and boreal regions of

the world represent alternative stable states for equivalent environ-

mental conditions (Favier et al., 2012; Hirota, Holmgren, Van Nes, &

Scheffer, 2011; Murphy & Bowman, 2012; Scheffer, Hirota, Holmgren,

Van Nes, & Chapin, 2012; Staver, Archibald, & Levin, 2011; Xu et al.,

2016). However, recently Hanan, Tredennick, Prihodko, Bucini, and

Dohn (2014, 2015) suggested that the adopted classification and

regression trees (CART) approach used to produce the MODIS VCF

tree cover estimates introduced a systematic bias which makes the

MODIS VCF product inappropriate for the analysis of percentage tree

cover frequency distributions. This point was countered by Staver and

Hansen (2015), who argued (i) that the approach taken by Hanan et al.

(2014), using simulated EO data and pseudosatellite metrics to
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demonstrate that an artificial bias is generated by the CART approach,

does not reflect the complexity and variability of landscapes and vege-

tation across the globe and (ii) that the CART model used by Hanan

et al. (2014) was highly pruned with very few nodes (9 nodes) com-

pared with that used for the MODIS VCF product (109 nodes) resulting

in a less smooth gradient of percentage tree cover values. In this analy-

sis we show that the VCF tree cover product is likely to also contain

systematic bias which is introduced in the pre-processing of calibration

data used to train the CART model. Such errors would exacerbate the

problem of aggregation in the CART predictions already demonstrated

by Hanan et al. (2014).

The VCF product is the result of a continuously developing

method which has been documented in a succession of publications

(Defries, Hansen, Townshend, Janetos, & Loveland, 2000; DeFries,

Townshend, & Hansen, 1999; Hansen, Townshend, Defries, & Carroll,

2005; Hansen et al., 2003; Hansen, DeFries, Townshend, Marufu,

et al., 2002; Hansen, DeFries, Townshend, Sohlberg, et al., 2002). The

most recent version is referred to as MOD44B collection 5, which is

available at a 250-m resolution and supersedes the previous collec-

tions, including the 500-m MOD44B collection 3. Collection 5 was

used in the most recent study of Xu et al. (2016), while collection 3

was used in the majority of the publications about discontinuities in

tree cover distributions (Favier et al., 2012; Hirota et al., 2011; Murphy

& Bowman, 2012; Scheffer et al., 2012; Staver et al., 2011).

The approach used to create the VCF product relies on two critical

components: (i) the creation of training samples and (ii) the implemen-

tation of a CART model that derives percentage tree cover from a col-

lection of MODIS-based metrics. The design (the number of nodes, the

choice of regression variables from the pool of MODIS-based metrics,

and the regressions) of the CART model is determined by the training

samples. In other words, during training, the design of the CART is tai-

lored to best reproduce the percentage tree cover values of the train-

ing samples. The method for deriving the samples used to train the

CART model has remained the same between collections (DiMiceli

et al., 2011; Townshend et al., 2011) and so the argument below

applies to all VCF versions, including the most recent MOD44B

collection 5.

Summarizing from Hansen, DeFries, Townshend, Sohlberg, et al.

(2002) (also the VCF User Guide), training samples are created as follows:

30-m Landsat Thematic Mapper image pixels are assigned one of four

discrete percentage tree cover classes (0%, 25%, 50%, 80%) with their

boundaries defined as (0–10%, 11–40%, 41–60%, 61–100%), respec-

tively. These classified 30-m Thematic Mapper images are then re-

gridded to produce 500-m (or 250-m) training pixels, matching the size

of the MODIS pixels. The resulting percentage tree cover values repre-

sent the average of the 30-m pixel class values contained within each

500-m pixel. In short, the training values represent weighted averages of

the discrete values 0%, 25%, 50% and 80%, with the weights defined by

the number of 30-m pixels found within the 500-m pixels having one of

the respective four values. We here evaluated the impact of deriving a

percentage tree cover gradient in this manner, which we will henceforth

refer to as ‘averaging with pre-average binning’, by first (i) considering a

range of one-dimensional cover distributions through a semi-analytical

experiment and then (ii) evaluating the effect of spatial autocorrelation

through a two-dimensional Monte Carlo simulation experiment.

The semi-analytical experiment involved simulations using the Beta

distributions (Taboga, 2012). The Beta distribution enabled us to repre-

sent a wide variety of possible continuous tree cover distributions found

within a training pixel (i.e. a 500-m pixel) by varying the shape parame-

ters a and b of the distribution (see Figure S1.1 in the Supporting Infor-

mation) and the percentage tree cover range (i.e. 0–100%, 0–80%,

20–100%) (see Appendix S1 for details). Pre-average binning into bin-

classes 0.5% (c. 0%), 25%, 50% and 80% is achieved through a subdivi-

sion of the distribution B(a,b) into four pieces, using three break points

z15 0.1, z25 0.4 and z35 0.6 and calculating the inferred mean hX̂i:
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where B(a,b)5 x(a – 1)(1 –x)(b – 1) and a and b are the shape parameters

(� 0); the denominator
ð1
0
Bða;bÞdx can be regarded as a normalizing

factor. Full details of the derivation of Equation 1 can be found in

Appendix S1. Testing for any bias was undertaken through a compari-

son of the inferred meanhX̂i with the true mean �x. Specifically, we

tested for many random values of a and b (> 0.5 and�6) postulating

that if there was no bias introduced through binning, the inferred mean

would match the true mean.

Results from this semi-analytical experiment clearly demonstrate

that binning percentage tree covers prior to averaging must introduce

biases in the CART training samples when the original tree cover distri-

bution within a tile is asymmetric. It is only when the distribution of

percentage tree cover is perfectly symmetric that no error in the

binned averages will occur (see Equation A5 in Appendix S1). The mag-

nitude of the bias and its location across the percentage tree cover axis

is defined by the shape of the distribution and the percentage tree

cover range within the tile, but a consistent tendency is for an overesti-

mation in averages near the 20–30% and 65% cover values and under-

estimation in averages near the 10–15% and the 40–50% cover values

(Figure 1). This pattern, although small, matches the discrepancy

observed in the validation data for Africa shown in fig. 1(b) of Staver

and Hansen (2015).

Monte Carlo simulations were designed to deliver theoretical two-

dimensional landscapes of percentage tree cover, in the form of a 1000

3 1000 grid of values in a similar fashion to the above approach, but in

this case allowing for spatial autocorrelation effects to be examined.
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From these, training pixel percentage tree cover values were derived

from averaging 20 3 20 grid cells (e.g. c. 30-m Landsat pixels) into

larger sized tiles (e.g. 500-m MODIS pixels). Tree covers were either

binned or kept unbinned prior to the averaging into tiles. Again, we rea-

soned that if there was no bias introduced through binning, the varia-

tion in percentage tree cover over the resulting training pixels would

be similar without a skew towards specific values of percentage tree

cover. We focused on the effects of spatial autocorrelation, which is

inherent in most landscapes (Gomez-Sanz, Bunce, & Elena-Rossello,

2014) and in real tree cover gradients, by modelling and comparing (i)

fully random uniform and Beta distributions of tree cover, (ii) a sharp

boundary landscape, in which half of the landscape was assigned a

100% tree cover and the remaining half a 0% tree cover, (iii) a patchy

landscape of autocorrelated Beta distributions across the 0–100% tree

cover range, (iv) a linear gradient of tree cover decreasing from 100%

to 0% tree cover along the landscape x axis, and (v) a complex gradient

representing Beta distributions across the 0–100% tree cover range.

More detail about the Monte Carlo simulations with example land-

scapes is given in Appendix S2.

Noting, first, that when the two-dimensional simulations were set

up to produce the same random non-spatially autocorrelated land-

scapes as in the semi-analytical experiment, the Monte Carlo approach

gives almost identical results as the application of Equation 1

(Fig. S2.4). It further seems that there is the introduction of a second

strong bias effect in the case of landscapes with a tree cover gradient

(Figure 2). This result is considered in more detail in Appendix S2 and

shows that in such a situation pre-average binning causes the training

pixel values to inevitably converge towards the bin-class averages. In

FIGURE 1 (a), (d) and (g) Scatter plots of training sample values (e.g. 500-m pixel) derived from averaging across smaller units (e.g. 30-m
pixels) with (Inferred mean) and without (True mean) pre-average binning. (b), (e) and (h) The histogram counts of the sample values. (c), (f)
and (i) The difference in histogram counts. The inputs are 1000 simulated Beta distributions made to fit a tree cover range of 0–80% (a, b
and c), 0–100% (d, e and f) and 20–100% (g, h and i), respectively, with the Beta shape variables a and b varying between 0.5 and 6
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other words, in gradually changing landscapes, the binning procedure

considerably lowers the variation in percentage tree cover. This results

in a dominant proportion of training pixels with bin-class average val-

ues of 0%, 25%, 50% and 80%. Hence, binning tree cover values

before averaging will inevitably underrepresent spatial variation and

gradual transitions in tree cover.

Having been trained by biased samples, the CART model must

necessarily propagate these biases to the resulting percentage tree

FIGURE 2 (a) Histograms of the original tree cover values and the training sample values (e.g. 500-m pixel) acquired through averaging (b)
without pre-average binning or (c) with pre-average binning. The original values are from Monte Carlo simulated theoretical two-
dimensional landscapes showing a complex gradient defined using Beta distributions (see Appendix S2 for more detail)
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cover map. However, because of (i) the complexity of real landscapes,

(ii) the large number of nodes in the model, (iii) the introduction of a

stepwise regression at each node to deliver a more contiguous range

of values (Hansen, DeFries, Townshend, Sohlberg, et al., 2002), and (iv)

the variability in the uncertainties of the predicted tree cover, this bias

will not always be immediately apparent. Of the published data we

know of, the clearest evidence of a bias can be observed in Hansen

et al. (2005) and explains the 38–45% discontinuity shown in fig. 1(b)

of Staver and Hansen (2015). Hansen et al. (2005) produced, applying

the VCF approach, 500-m percentage tree cover maps for a region in

Zambia using 500-m training samples that did not undergo pre-average

binning at the 30-m Thematic Mapper pixel scale. Comparison with

independent validation data show that, in this case, the CART variants

being tested were able to reproduce the continuous tree cover gradi-

ent observed in the validation data (Figure 3a). But when the same vali-

dation data were used to evaluate the MODIS VCF collection 3

created using training samples that had undergone pre-average binning

(Figure 3b and also fig. 1(b) in Staver and Hansen (2015)) a clear reduc-

tion in values near the 10% and 40% cover range is revealed, indicating

a bias. Similarly, the scattergram in Sexton et al. (2013) that compares

the MODIS VCF collection 5 with validation data for three sites in

America and one in Costa Rica suggests that there may be a slight fre-

quency minimum around the 60% tree cover range, matching the con-

ditions shown in Figure 1g–i. However, without a statistical test for

unimodality (Hartigan & Hartigan, 1985) the data in this case are

inconclusive.

The bias will not always be readily noticeable. Moreover, the bias

will not exist over areas where the corresponding training samples

were derived from areas where there was no gradient and/or the tree

cover distributions were symmetrical. As an example, the validation

VCF scattergrams for the taiga–tundra transition zone, shown in Mon-

tesano et al. (2009) for the MODIS VCF collection 4, reveal no clear

clustering of tree covers around the bin-class averages.

We have demonstrated here, using combined semi-analytical and

two-dimensional Monte Carlo simulations and data published by

Hansen et al. (2005), that tree cover frequency minima and maxima

could be caused by a bias in the samples used to train the CART model.

This bias will be present in all MODIS VCF collections in areas where

the majority of the corresponding training samples were derived from

landscapes that have an asymmetric tree cover distribution, contain a

tree cover gradient, or a combination of both. This effect is likely to be

further enhanced by the CART through the inherent aggregation of

predicted values around nodal means. In support of Hanan et al.

(2014), we argue that the MODIS VCF tree cover product should not

be used to detect discontinuities in tree cover as, although landscapes

vary across the globe, a majority will contain local tree cover distribu-

tions that are asymmetric and some will contain tree cover gradients.
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